Superphysics Superphysics
Chapter 10c

THE MASS OF ELECTRONS

by Lucien Poincare
6 minutes  • 1153 words

Other conceptions, bolder still, are suggested by the results of certain interesting experiments. The electron affords us the possibility of considering inertia and mass to be no longer a fundamental notion, but a consequence of the electromagnetic phenomena.

Professor J.J. Thomson was the first to have the clear idea that a part, at least, of the inertia of an electrified body is due to its electric charge.

This idea was taken up and precisely stated by Professor Max Abraham, who, for the first time, was led to regard seriously the seemingly paradoxical notion of mass as a function of velocity. Consider a small particle bearing a given electric charge, and let us suppose that this particle moves through the ether.

It is, as we know, equivalent to a current proportional to its velocity, and it therefore creates a magnetic field the intensity of which is likewise proportional to its velocity: to set it in motion, therefore, there must be communicated to it over and above the expenditure corresponding to the acquisition of its ordinary kinetic energy, a quantity of energy proportional to the square of its velocity.

Everything, therefore, takes place as if, by the fact of electrification, its capacity for kinetic energy and its material mass had been increased by a certain constant quantity. To the ordinary mass may be added, if you will, an electromagnetic mass.

This is the state of things so long as the speed of the translation of the particle is not very great, but they are no longer quite the same when this particle is animated with a movement whose rapidity becomes comparable to that with which light is propagated.

The magnetic field created is then no longer a field in repose, but its energy depends, in a complicated manner, on the velocity, and the apparent increase in the mass of the particle itself becomes a function of the velocity. More than this, this increase may not be the same for the same velocity, but varies according to whether the acceleration is parallel with or perpendicular to the direction of this velocity. In other words, there seems to be a longitudinal; and a transversal mass which need not be the same.

All these results would persist even if the material mass were very small relatively to the electromagnetic mass; and the electron possesses some inertia even if its ordinary mass becomes slighter and slighter. The apparent mass, it can be easily shown, increases indefinitely when the velocity with which the electrified particle is animated tends towards the velocity of light, and thus the work necessary to communicate such a velocity to an electron would be infinite. It is in consequence impossible that the speed of an electron, in relation to the ether, can ever exceed, or even permanently attain to, 300,000 kilometres per second.

All the facts thus predicted by the theory are confirmed by experiment. There is no known process which permits the direct measurement of the mass of an electron, but it is possible, as we have seen, to measure simultaneously its velocity and the relation of the electric charge to its mass.

In the case of the cathode rays emitted by radium, these measurements are particularly interesting, for the reason that the rays which compose a pencil of cathode rays are animated by very different speeds, as is shown by the size of the stain produced on a photographic plate by a pencil of them at first very constricted and subsequently dispersed by the action of an electric or magnetic field.

Professor Kaufmann has effected some very careful experiments by a method he terms the method of crossed spectra, which consists in superposing the deviations produced by a magnetic and an electric field respectively acting in directions at right angles one to another.

He has thus been enabled by working in vacuo to register the very different velocities which, starting in the case of certain rays from about seven-tenths of the velocity of light, attain in other cases to ninety-five hundredths of it.

It is thus noted that the ratio of charge to mass—which for ordinary speeds is constant and equal to that already found by so many experiments—diminishes slowly at first, and then very rapidly when the velocity of the ray increases and approaches that of light.

If we represent this variation by a curve, the shape of this curve inclines us to think that the ratio tends toward zero when the velocity tends towards that of light.

All the earlier experiments have led us to consider that the electric charge was the same for all electrons, and it can hardly be conceived that this charge can vary with the velocity. For in order that the relation, of which one of the terms remains fixed, should vary, the other term necessarily cannot remain constant. The experiments of Professor Kaufmann, therefore, confirm the previsions of Max Abraham’s theory: the mass depends on the velocity, and increases indefinitely in proportion as this velocity approaches that of light. These experiments, moreover, allow the numerical results of the calculation to be compared with the values measured. This very satisfactory comparison shows that the apparent total mass is sensibly equal to the electromagnetic mass; the material mass of the electron is therefore nil, and the whole of its mass is electromagnetic.

Thus the electron must be looked upon as a simple electric charge devoid of matter. Previous examination has led us to attribute to it a mass a thousand times less that that of the atom of hydrogen, and a more attentive study shows that this mass was fictitious. The electromagnetic phenomena which are produced when the electron is set in motion or a change effected in its velocity, simply have the effect, as it were, of simulating inertia, and it is the inertia due to the charge which has caused us to be thus deluded.

The electron is therefore simply a small volume determined at a point in the ether, and possessing special properties; [49] this point is propagated with a velocity which cannot exceed that of light. When this velocity is constant, the electron creates around it in its passage an electric and a magnetic field; round this electrified centre there exists a kind of wake, which follows it through the ether and does not become modified so long as the velocity remains invariable. If other electrons follow the first within a wire, their passage along the wire will be what is called an electric current.

When the electron is subjected to an acceleration, a transverse wave is produced, and an electromagnetic radiation is generated, of which the character may naturally change with the manner in which the speed varies. If the electron has a sufficiently rapid periodical movement, this wave is a light wave; while if the electron stops suddenly, a kind of pulsation is transmitted through the ether, and thus we obtain Röntgen rays.

Any Comments? Post them below!