Superphysics
Chapter 1

Quantity

by Hegel
5 minutes  • 1027 words

A. PURE QUANTITY

§ 395

Quantity is sublated being-for-self; the repelling one which related itself only negatively to the excluded one, having passed over into relation to it, treats the other as identical with itself, and in doing so has lost its determination: being-for-self has passed over into attraction.

The absolute brittleness of the repelling one has melted away into this unity which, however, as containing this one, is at the same time determined by the immanent repulsion, and as unity of the self-externality is unity with itself. Attraction is in this way the moment of continuity in quantity.

§ 396

Continuity is, therefore, simple, self-same self-relation, which is not interrupted by any limit or exclusion; it is not, however, an immediate unity, but a unity of ones which possess being-for-self. The asunderness of the plurality is still contained in this unity, but at the same time as not differentiating or interrupting it. In continuity, the plurality is posited as it is in itself; the many are all alike, each is the same as the other and the plurality is, consequently, a simple, undifferentiated sameness. Continuity is this moment of self-sameness of the asunderness, the self-continuation of the different ones into those from which they are distinguished.

§ 397

In continuity, therefore, magnitude immediately possesses the moment of discreteness — repulsion, as now a moment in quantity. Continuity is self-sameness, but of the Many which, however, do not become exclusive; it is repulsion which expands the selfsameness to continuity. Hence discreteness, on its side, is a coalescent discreteness, where the ones are not connected by the void, by the negative, but by their own continuity and do not interrupt this self-sameness in the many.

§ 398

Quantity is the unity of these moments of continuity and discreteness, but at first it is so in the form of one of them, continuity, as a result of the dialectic of being-for-self, which has collapsed into the form of self-identical immediacy. Quantity is, as such, this simple result in so far as being-for-self has not yet developed its moments and posited them within itself. It contains them to begin with as being-for-self posited as it is in truth. The determination of being-for-self was to be a self-sublating relation-to-self, a perpetual coming-out-of-itself. But what is repelled is itself; repulsion is, therefore, the creative flowing away of itself. On account of the self-sameness of what is repelled, this distinguishing or differentiation is an uninterrupted continuity; and because of the coming-out-of-itself this continuity, without being interrupted, is at the same time a plurality, which no less immediately remains in its self-identicalness.

Remark 1: The Conception of Pure Quantity

Remark 2: The Kantian Antinomy of the Indivisibility and the Infinite Divisibility

B Continuous and Discrete Magnitude Remark: The Usual Separation of These Magnitudes

§ 432

In the usual ideas of continuous and discrete magnitude, it is overlooked that each of these magnitudes contains both moments, continuity and discreteness, and that the distinction between them consists only in this, that in one of the moments the determinateness is posited and in the other it is only implicit. Space, time, matter, and so forth are continuous magnitudes in that they are repulsions from themselves, a streaming forth out of themselves which at the same time is not their transition or relating of themselves to a qualitative other. They possess the absolute possibility that the one may be posited in them at any point — not the empty possibility of a mere otherness (as when it is said, it is possible that a tree might stand in the place of this stone), but they contain the principle of the one within themselves; it is one of the determinations which constitute them.

§ 433

Conversely, in discrete magnitude continuity is not to be overlooked; this moment is, as has been shown, the one as unity.

Continuous and discrete magnitude can be regarded as species of quantity, provided that magnitude is posited, not under any external determinateness, but under the determinatenesses of its own moments; the ordinary transition from genus to species allows external characteristics to be attributed to the former according to some external basis of classification. And besides, continuous and discrete magnitude are not yet quanta; they are only quantity itself in each of its two forms. They are perhaps, called magnitudes in so far as they have in common with quantum simply this-to be a determinateness in quantity.

C. LIMITATION OF QUANTITY § 434

Discrete magnitude has first the one for its principle; secondly, it is a plurality of ones; and thirdly, it is essentially continuous; it is the one as at the same time sublated, as unity, the continuation of itself as such in the discreteness of the ones. Consequently, it is posited as one magnitude, the determinateness of which is the one which, in this posited and determinate being is the excluding one, a limit in the unity. Discrete magnitude as such is immediately not limited; but as distinguished from continuous magnitude it is a determinate being, a something, with the one as its determinateness and also as its first negation and limit.

§ 435

This limit, which is related to the unity and is the negation in it, is also, as the one, self-related; it is thus the enclosing, encompassing limit. Limit here is not at first distinguished from its determinate being as something, but, as the one, is immediately this negative point itself. But the being which here is limited is essentially a continuity, by virtue of which it passes beyond the limit, beyond this one, to which it is indifferent. Real discrete quantity is thus a quantity, or quantum — quantity as a determinate being and a something.

§ 436

Since the one which is a limit includes within itself the many ones of discrete quantity, it equally posits them as sublated within it; and because it is a limit of continuity simply as such, the distinction between continuous and discrete magnitude is here of no significance; or, more correctly, it is a limit to the continuity of the one as much as of the other; both undergo transition into quanta.