Table of Contents
SAGR. Now in the third place I should like you to tell me whether you believe that the moon and the other planets and celestial bodies have their own motions, and what these are.
They have, and they are those motions in accordance with which they run through the zodiac–the moon in a month, the sun in a year, Mars in two, the stellar sphere in so many thousands. These are their own natural motions.

SAGR. Now as to that motion with which the fixed stars, and with them all the planets, are seen rising and setting and returning to the east every twenty-four hours. How does that belong to them?
SIMP. They have that by participation.
SAGR. Then it does not reside in them; and neither residing in them, nor being able to exist without some subject to reside in, it must be made the proper and natural motion of some other sphere.
As to this, astronomers and philosophers have discovered another very high sphere, devoid of stars, to which the diurnal rotation naturally belongs. To this they have given the name primum mobile; this speeds along with it all the inferior spheres, contributing to and sharing with them its motion.

But when all things can proceed in most perfect harmony without Introducing other huge and unknown spheres; without other movements or imparted speedings; with every sphere having only its simple motion, unmixed with contrary movements, and with everything taking place in the same direction, as must be the case if all depend upon a single principle, why reject the means of doing this, and give assent to such outlandish things and such labored conditions?

SIMP. The point is to find a simple and ready means.
This seems to me to be found, and quite elegantly. Make the earth the primum mobile; that is, make it revolve upon itself in twenty-four hours in the same way as all the other spheres. Then, without its imparting such a motion to any other planet or star, all of them will have their risings, settings, and in a word all their other appearances.

The crucial thing is being able to move the earth without causing a thousand inconveniences.


All inconveniences will be removed as you propound them. Up to this point, only the first and most general reasons have been mentioned which render it not entirely improbable that the daily rotation belongs to the earth rather than to the rest of the universe.
Nor do I set these forth to you as inviolable laws, but merely as plausible reasons. For I understand very well that one single experiment or conclusive proof to the contrary would suffice to overthrow both these and a great many other probable arguments. So there is no need to stop here; rather let us proceed ahead and bear what Simplicio answers, and what greater probabilities or firmer arguments be adduces on the other side.
First I shall say some things in general about all these considerations taken together, and then get down to certain particulars.
It seems to me that you base your case throughout upon the greater ease and simplicity of producing the same effects. As to their causation, you consider the moving of the earth alone equal to the moving of all the rest of the universe except the earth, while from the standpoint of action, you consider the former much easier than the latter.
To this I answer that it seems that way to me also when I consider my own powers, which are not finite merely, but very feeble. But with respect to the power of the Mover, which is infinite, it is just as easy to move the universe as the earth, or for that matter a straw. And when the power is infinite, why should not a great part of it be exercised rather than a small? From this it appears to me that the general argument is ineffective.

SALV. If I had ever said that the universe does not move because of any lack of power in the Mover, I should have been mistaken, and your correction would be opportune; I grant you that it is as easy for an infinite force to move a hundred thousand things as to move one. But what I have been saying was with regard not to the Mover, but only the movables; and not with regard to their resistance alone, which is certainly less for the earth than for the universe, but with regard to other particulars considered just now.
Next, as to your saying that a great part of an infinite power may better be exercised than a small part, I reply to you that one part of the infinite is not greater than another, when both are-finite; nor can it be said of an infinite number that a hundred thousand is a greater part than two I . s, though the former is fifty thousand times as great as the latter. And if what is required in order to move the universe is a finite power, then even though this would be very large in comparison with what would be required to move the earth alone, nevertheless a greater part of the infinite power would not thereby be employed, nor would that which remained idle be less than infinite. Hence to apply a little more or less power for a particular effect is insignificant. Besides, the operations of such power do not have for their end and goal the diurnal movement alone, for there are many other motions of the universe that we know of, and there may be very many more unknown to us.
Giving our attention, then, to the movable bodies, and not questioning that it is a shorter and readier operation to move the earth than the universe, and paying attention to the many other simplifications and conveniences that follow from merely this one, it is much more probable that the diurnal motion belongs to the earth alone than to the rest of the universe excepting the earth. This is supported by a very true maxim of Aristotle’s which teaches that frustra fit per plura quod potest fieri per pauciora.
In referring to this axiom you have left out one little clause that means everything, especially for our present purposes. The detail left out is aeque bene; hence it is necessary to examine whether both assumptions can satisfy us equally well in every respect.


Finding out whether both positions satisfy us equally well will be included in the detailed examination of the appearances which they have to satisfy. For we have argued ex hypothesi up to now, and Will continue to argue so, assuming that both positions are equally adapted to the fulfillment of all the appearances. So I suspect that this detail which you declare to have been omitted by me was rather superfluously added by you.
Saying “equally well” names a relation, which necessarily requires at I east two terms, one thing not being capable of being related to itself, one cannot say, for example, that quiet is equally good with quiet. Therefore to say: “It is pointless to use many to accomplish what may be done with fewer” implies that what is to be done must be the same thing, and not two different things.
Because the same thing cannot be said to be equally well done With itself, the addition of the phrase “equally well” Is superfluous, and a relation with only one term,
If we do not want to repeat what happened yesterday, please get back to the point; and you, Simplicio, begin producing those difficulties that seem to you to contradict this new arrangement of the universe.

The arrangement is most ancient, as is shown by Aristotle refuting it:
- Whether the earth is moved in itself in the center, or in a circle moved from the center, the earth must be moved with such motion by force, for this is not its natural motion.
Because if it were, it would belong also to all its particles. But every one of them is moved along a straight line toward the center. Being thus forced and preternatural, it cannot be everlasting. But the world order is eternal; therefore, etc.
- All other bodies which move circularly lag behind, and are moved with more than one motion, except the primum mohile.
Hence it would be necessary that the earth be moved also with two motions; and if that were so, there would have to be variations in the fixed stars.
But such are not to be seen; rather, the same stars always rise and set in the same place without any vaniations.
- The natural motion of the parts and of the whole is toward the center of the universe, and for that reason also it rests therein."
He then discusses the question whether the motion of the parts is toward the center of the universe or merely toward that of the earth, concluding that their own tendency is to go toward the former, and that only accidentally do they go toward the latter, which question was argued at length yesterday.
Finally he strengthens this with a fourth argument taken from experiments with heavy bodies which, failing from a height, go perpendicularly to the surface of the earth.
Similarly, projectiles thrown vertically upward come down again perpendicularly by the same line, even though they have been thrown to immense height. These arguments are necessary proofs that their motion is toward the center of the earth, which, without moving in the least, awaits and receives them.
He then hints at the end that astronomers adduce other reasons in confirmation of the same conclusions–that the earth is in the center of the universe and immovable.
A single one of these is that all the appearances seen In the movements of the stars correspond with this central position of the earth, which correspondence they would not otherwise possess. The others, adduced by Ptolemy and other astronomers, I can give you now if you like; or after you have said as much as you want to In reply to these of Aristotle.


The arguments produced on this matter are of two kinds. Some pertain to terrestrial events without relation to the stars, and others are drawn from the appearances and observations of celestial things.
Aristotle’s arguments are drawn mostly from the things around us, and he leaves the others to the astronomers.
Hence it will be good, if it seems so to you, to examine those taken from earthly experiments, and thereafter we shall see to the other sort. And since some such arguments are adduced by Ptolemy, Tycho, and other astronomers and philosophers, in addition to their accepting, confirming, and supporting those of Aristotle, these may all be taken together in order not to have to give the same or similar answers twice.
Therefore, Simplicio, present them, if you will; or, if you want me to relieve you of that burden, I am at your service.
It will be better for you to bring them up, for having given them greater study you will have them readier at hand, and in great number too….


But you, the author, and Aristotle, Ptolemy and all their followers think that earth, water, and air are equally of such a nature as to be constituted immovable about the center.
Then the argument for the different natures of these elements and elemental things is not taken from this common natural condition of rest with respect to the center, but must be learned by taking notice of other qualities which they do not have in common. Therefore whoever should take from the elements only this common state of rest, and leave them all their other actions, would not in the least obstruct the road which leads us to an awareness of their essences.
Now Copernicus takes from them nothing except this common rest, leaving to them weight or lightness; motion up or down, slow or fast; rarity and density; the qualities of beat, cold, dryness, moistness; and, in a word, everything else.
Hence no such absurdity as this author imagines exists anywhere in the Copernican position. Agreement in an identical motion means neither more nor less than agreement in an identical state of rest, so far as any diversification or nondiversification of natures is concerned. Now tell me if he has other opposing arguments.
There follows a fourth objection, taken once again from an observation of nature.
It is that bodies of the same kind have motions which agree in kind, or else they agree in rest. But in Copernicus’s theory, bodies agreeing in kind and quite similar to each other would have great discrepancies as to motion, or even be diametrically opposed.
For stars, so very similar to one another, would nevertheless have such dissimilar motions that six planets would perpetually go around, while the sun and the fixed stars would remain forever unmoved.


The form of this argumentation appears to me valid, but I believe that its content or its application is at fault, and if the author were to persist in this assumption the consequences would run directly counter to his. The method of argument is this:
Among world bodies, there are six which perpetually move; these are the six planets. Of the others (that is, the earth, the sun, and the fixed stars) the question is which move and which stand still. If the earth stands still, the sun and the fixed stars necessarily move, and it may also be that the sun and the fixed stars are motionless if the earth is moving. This matter being in question, we inquire which ones may more suitably have motion attributed to them, and which ones rest.
Common sense says that motion ought to be deemed to belong to those which agree better in kind and in essence with the bodies which unquestionably do move, and rest to those which differ most from them. Eternal rest and perpetual motion being very different events, it is evident that the nature of an ever-moving body must be quite different from that of one which is always fixed. Let us therefore find out, when in doubt about motion and rest, whether by way of some other relevant condition we can investigate which–the earth, or the sun and the fixed stars–more resembles those bodies which are known to be movable,
Now behold how nature, favoring our needs and wishes, presents us with two striking conditions no less different than motion and rest; they are lightness and darkness–that is, being brilliant by nature or being obscure and totally lacking in light. Therefore bodies shining with internal and external splendor are very different in nature from bodies deprived of all light. Now the earth is deprived of light; most splendid in itself is the sun, and the fixed stars are no less so. The six moving planets entirely lack light, like the earth; therefore their essence resembles the earth and differs from the sun and the fixed stars. Hence the earth moves, and the sun and the stellar sphere are motionless.
But the author will not concede that the six planets are dark, and will stand firm upon that denial; or else he will argue the great conformity in nature between the six planets and the sun and fixed stars, as well as the contrast between the latter and the earth, with respect to conditions other than those of darkness and light. Indeed, I now see that here In the fifth objection, which follows, there is set forth the great disparity between the earth and the heavenly bodies. He writes that there would be great confusion and trouble in the system of the universe and among its parts, according to the Copernican hypothesis, because of its placing among the heavenly bodies (immutable and incorruptible according to Aristotle, Tycho, and others); among bodies of such nobility by the admission of everyone (including Copernicus himself, who declares them to be ordered and arranged in the best possible manner and who removes from them any inconstancy of power); because, I say, of its placing among bodies as pure as Venus and Mars this sink of all corruptible material; that is, the earth, with the water, the air, and all their mixtures!
How much superior a distribution, and how Much more suitable it is to nature–indeed, to God the Architect Himself–to separate the pure from the impure, the mortal from the immortal, as all other schools teach, showing us that impure and infirm materials are confined within the narrow arc of the moon’s orbit, above which the celestial objects rise in an unbroken series!


The Copernican system creates disturbances in the Anistotelian universe, but we are dealing with our own real and actual universe.
If a disparity in essence between the earth and the heavenly bodies is inferred by this author from the incorruptibility of the latter and the corruptibility of the former in Aristotle’s sense, from which disparity he goes on to conclude that motion must exist in the sun and fixed stars, With the earth immovable, then he is wandering about in a paralogism and assuming what is in question. For Aristotle wants to infer the incorruptibility of heavenly bodies from their motion, and it is being debated whether this is theirs or the earth’s. Of the folly of this rhetorical deduction, enough has already been said. What is more vapid than to say that the earth and the elements are banished and sequestered from the celestial sphere and confined within the lunar orbit? Is not the lunar orbit one of the celestial spheres, and according to their consensus is it not right in the center of them all? This is indeed a new method of separating the impure and sick from the sound-giving to the infected a place in the heart of the city! I should have thought that the leper house would be removed from there as far as possible.
Copernicus admires the arrangement of the parts of the universe because of God’s having placed the great luminary which must give off its mighty splendor to the whole temple right in the center of it, and not off to one side. As to the terrestrial globe being between Venus and Mars, let me say one word about that. You yourself, on behalf of this author, may attempt to remove it, but please let us not entangle these little flowers of rhetoric in the rigors of demonstration. Let us leave them rather to the orators, or better to the poets, who best know how to exalt by their graciousness the most vile and sometimes even pernicious things. Now if there is anything remaining for us to do, let us get on with it.
Here is the sixth and last argument, in which he puts it down as an unlikely thing that a corruptible and evanescent body could have a perpetual regular motion. This he supports by the example of the animals, which, though they move with their natural motion, nevertheless get tired and must rest to restore their energy. And what is such motion compared to the motion of the earth, which is immense in comparison with theirs? Yet the earth is made to move in three discordant and distractingly different ways I Who would ever be able to assert such a thing, except someone who was sworn to its defense?
Nor in this case is there any use in Copenicus saying that this motion, because it is natural to the earth and not constrained, works contrary effects to those of forced motions; and that things which are given impetus are destined to disintegrate and cannot long subsist, whereas those made by nature maintain themselves in their optimum arrangement. This reply, I say, is no good; it falls down before our answer. For the animal is a natural body too, not an artificial one; and its movement is natural, deriving from the soul; that is, from an intrinsic principle, while that motion is constrained whose principle is outside and to which the thing moved contributes nothing. Yet if the animal continues its motion long, it becomes exhausted and would even die if it obstinately tried to force itself on.
You see, therefore, how everywhere in nature traces are to be found which are contrary to the position of Copernicus, and never one in favor of it. And in order that I shall not have to resume the role of this opponent, hear what be has to say against Kepler (with whom he is in disagreement) in regard to what this Kepler has objected against those to whom it seemed an unsuitable or even an impossible thing to expand the stellar sphere as much as the Copernican position requires. Kepler objects to this by saying: “Difficilius est accidens prueter modulum subiecti intendere, quam subiectum sine accidente augere: Copernicus igitur verisimiliusfacit, qui auget orbem stellarum fixarum absque motu, quam Ptolenweza, qui auget motumfixarum immensa velocilate.” (“It is harder to stretch the property beyond the model of the thing than to augment the thing without the property.
Copernicus therefore has more probability on his side, increasing the orb of the stars as fixed without motion, than does Ptolemy who augments the motion of the fixed stars by an immense velocity.”) The author resolves this objection, marveling that Kepler was so misled as to say that the Ptolemaic hypothesis increases the motion beyond the model of the subject, for it appears to him that this is increased only in proportion to the model, and that in accordance with this latter the velocity of motion is augmented. He proves this by imagining a millstone which makes one revolution in twenty-four hours, which motion will be called very slow.
Next he supposes its radius to be prolonged all the way to the sun; the velocity of its extremity will equal that of the sun; prolonging it to the stellar sphere, it will equal the velocity of the fixed stars. Yet at the circumference of the millstone it will be very slow. Next, applying this reflection about the millstone to the stellar sphere, let us imagine a point on the radius of that sphere as close to its center as the radius of the millstone. Then the same motion which is very rapid in the stellar sphere will be very slow at this point. The size of the body is what makes it become very fast from being very slow, and thus the velocity does not grow beyond the model of the subject, but rather it increases according to that and to its size, very differently from what Kepler thinks.


I do not believe that this author entertained so poor and low an opinion of Kepler as to be able to persuade himself that Kepler did not understand that the farthest point on a line drawn from the center out to the starry orb moves faster than a point on the same line no more than two yards from the center.
Therefore he must have seen and comprehended perfectly well that what Kepler meant was that it was less unsuitable to increase an immovable body to an enormous size than to attribute an excessive velocity to a body already vast, paying attention to the proportionality (modulo)–that is to say, to the standard and example–of other natural bodies, in which it is seen that as the distance from the center increases, the velocity is decreased; that is, the period of rotation for them requires a longer time. But in a state of rest, which is incapable of being made greater or less, the size of the body makes no difference whatever. So that if the author’s reply Is to have any bearing upon Kepler’s argument, this author will have to believe that it is all the same to the motive principle whether a very tiny or an immense body is moved for the same time, the increase of velocity being a direct consequence of the increase in size.
But this is contrary to the architectonic rule of nature as observed in the model of the smaller spheres, Just as we see in the planets (and most palpably in the satellites of Jupiter) that the smaller orbs revolve in the shorter times. For this reason Saturn’s time of revolution is longer than the period of any lesser orb, being thirty years. Now to pass from this to a much larger sphere, and make that revolve in twenty-four hours, can truly be said to go beyond the rule of the model.
So that if we consider the matter carefully, the author’s answer does not go against the sense and idea of the argument, but against its expression and manner of speaking. And here also the author is wrong, nor can he deny having in a way perverted the sense of the words in order to charge Kepler with too crass an ignorance. But the imposture is so crude that with all his censure he has not been able to detract from the impression that Kepler has made upon the minds of the learned with his doctrine.
Then as to the objection against the perpetual motion of the earth, taken from the impossibility of its keeping on without becoming fatigued, since animals themselves that move naturally and from an internal principle get tired and have need of repose to relax their members …
SAGR. It seems to me that I hear Kepler answering him that there are also animals which refresh themselves from weariness by rolling on the ground, and that hence there is no need to fear that the earth will tire; it may even be reasonably said that it enjoys a perpetual and tranquil repose by keeping itself in an eternal rolling about.
A movement that serves for repose and removes the weariness from a body tired of traveling may much more easily serve to ward it off, just as preventive remedies are easier than curative ones. And I am sure that if the motion of animals took place as does this one which is attributed to the earth, they would not weary at all. For the fatigue of the animal body proceeds, to my thinking, from the employment of but one part in moving itself and the rest of the body. Thus, for instance, in walking, only the thighs and the legs are used to carry themselves and all the rest, but on the other hand you see the movement of the heart to be indefatigable, because it moves itself alone.
Besides, I don’t know how true it is that the movement of animals is natural rather than constrained. Rather, I believe it can be truly said that the soul naturally moves the members of the animal with a preternatural motion. For if motion upward is preternatural to heavy bodies, the raising of such heavy bodies as the thigh and the leg to walk cannot be done without constraint, and therefore not without tiring the mover. Climbing up a ladder carries a heavy body upward against its natural tendency, from which follows weariness because of the natural repugnance of heaviness to such a motion. But if a movable body has a motion to which it has no repugnance whatever, what tiredness or diminution of force and of power need be feared on the part of the mover? And why should power be dissipated where it is not employed at all?
It is against the contrary motions by which the terrestrial globe is imagined to move that the author directs his objection.

SAGR. It has already been said that they are not contrary at all, and that in this the author is much deceived, so that the strength of his objection is turned against the objector himself when he will have it that the primum mobile carries all the lower spheres along, contrary to the motion which they are continually employing at the same time. Therefore it is the primum mobile which ought to get tired, since besides moving itself it has to take along many other spheres which moreover oppose it with a contrary motion.
Hence the last conclusion that the author drew, saying that in going over the effects of nature, things favorable to the Aristotelian and Ptolemaic opinion are always found and never any that do not contradict Copernicus, stands in need of careful consideration. It is better to say that if one of these positions is true and the other necessarily false, it is impossible for any reason, experiment, or correct argument to be found to favor the false one, as none of these things can be repugnant to the true position. Therefore a great disparity must exist between the reasons and arguments that are adduced by the one side and by the other for and against these two opinions, the force of which I leave you to judge for yourself, Simplicio.

SALV. Carried away by the nimbleness of your wit, Sagredo, you have taken the words out of my mouth just when I meant to say something in reply to this last argument of the author’s; and although you have replied more than adequately, I wish to add anyway what I had more or less in mind.
He puts it down as a very improbable thing that an evanescent and corruptible body such as the earth could move perpetually with a regular motion, especially since we see animals finally exhaust themselves and stand in need of rest. And to him this improbability is increased by this motion being immeasurably greater in companison with that of animals. Now I cannot understand why he should be disturbed at present about the speed of the earth, when that of the stellar sphere, which is so much greater, causes him no more considerable disturbance than does that which he ascribes to the velocity of a millstone performing only one revolution every twentv-four hours. If the velocity of rotation of the earth, by being in accord with the model of the millstone, implies no consequence of greater moment than that does, then the author can quit worrying about the exhaustion of the earth; for not even the most languid and sluggish animal–not even a chameleon, I say–would get exhausted from moving no more than five or six yards every twenty-four hours. But if he means to consider the velocity absolutely, and no longer on the model of this millstone, then inasmuch as the movable body must pass over a very great space in twenty-four hours, he should show himself so much the more reluctant to concede this to the starry sphere, which, with incomparably greater speed than that of the earth, must take along with it thousands of bodies, each much larger than the terrestrial globe.
It would now remain for us to see the proof by which this author concludes that the new stars of 1572 and 1604 were sublunar in position, and not celestial, as the astronomers of that time were commonly persuaded; truly a great undertaking. But since these writings are new to me, and long by reason of so many calculations, I thought that it would be more expeditious for me to look them over as well as I can between this evening and tomorrow morning; and then tomorrow, returning to our accustomed discussions, I shall tell you what I have got out of them. Then, if there is time enough, we shall discuss the annual movement attributed to the earth.
Meanwhile, if there is anything else you want to say–particularly you, Simplicio–about matters pertaining to this diurnal motion which has been so lengthily examined by me, there is yet a little while left to us in which this can be discussed.
Our discussions today are full of the most acute and ingenious ideas adduced on the Copernican side in support of the earth’s motion. But I do not feel entirely persuaded to believe them.
The things which have been said prove nothing except that the reasons for the fixedness of the earth are not necessary reasons. But no demonstration on the opposing side is thereby produced which necessarily convinces one and proves the earth’s mobility.


I have never taken it upon myself, Simplicio, to alter your opinion; much less should I desire to pass a definite judgment on such important litigation. My only intention has been, and will still be in our next debate, to make it evident to you that those who have believed that the very rapid motion every twenty-four hours belongs to the earth alone, and not to the whole universe with only the earth excepted, were not blindly persuaded of the possibility and necessity of this. Rather, they had very well observed, heard, and examined the reasons for the contrary opinion, and did not airily wave them aside. With this same intention, if such is your wish and Sagredo’s, we can go on to the consideration of that other movement attributed to the same terrestrial globe, first by Anistarchus of Samos and later by Nicholas Copernicus, which is, as I believe you well know, that it revolves under the zodiac in the space of a year around the sun, which is immovably placed in the center of the zodiac.
The question is so great and noble that I shall listen to its discussion with deep interest, expecting to hear everything that can be said upon the subject. Following that, I shall go on by myself at my leisure In the deepest reflections upon what has been heard and what is to be heard. And if I gain nothing else, it will be no small thing to be able to reason upon more solid ground.

SAGR. Then in order not to weary Salviati further, let us put an end to today’s discussions, and tomorrow we shall take up the discourse again according to our custom, hoping to hear great new things.
I shall leave the book on the new stars, but I am taking back this booklet of theses in order to look over once more what is there written against the annual motion, which will be the subject of tomorrow’s discussion.
