Superphysics Superphysics
Chapter 12

Proximate Instances wanting the Nature of Heat

32 minutes  • 6758 words
Table of contents

12. Instances of extremity or limits


They are not only serviceable when subjoined to fixed propositions, but also of themselves and from their own nature. They indicate with sufficient precision the real divisions of nature, and measures of things, and the “how far” nature effects or allows of anything, and her passage thence to something else.

Such are gold in weight, iron in hardness, the whale in the size of animals, the dog in smell, the flame of gunpowder in rapid expansion, and others of a like nature. Nor are we to pass over the extremes in defect, as well as in abundance, as spirits of wine in weight, the touchstone in softness, the worms upon the skin in the size of animals, and the like.

35 Alliance or union.

These mingle and unite natures held to be heterogeneous, and observed and marked as such in received classifications.

These instances show that the operation and effect, which is considered peculiar to some one of such heterogeneous natures, may also be attributed to another nature styled heterogeneous, so as to prove that the difference of the natures is not real nor essential, but a mere modification of a common nature. They are very serviceable, therefore, in elevating and carrying on the mind, from differences to genera, and in removing those phantoms and images of things, which meet it in disguise in concrete substances.

For example: let the required nature be heat. The classification of heat into three kinds, that of the celestial bodies, that of animals, and that of fire, appears to be settled[189] and admitted; and these kinds of heat, especially one of them compared with the other two, are supposed to be different, and clearly heterogeneous in their essence and species, or specific nature, since the heat of the heavenly bodies and of animals generates and cherishes, while that of fire corrupts and destroys. We have an instance of alliance, then, in a very common experiment, that of a vine branch admitted into a building where there is a constant fire, by which the grapes ripen a whole month sooner than in the air; so that fruit upon the tree can be ripened by fire, although this appear the peculiar effect of the sun.

From this beginning, therefore, the understanding rejects all essential difference, and easily ascends to the investigation of the real differences between the heat of the sun and that of fire, by which their operation is rendered dissimilar, although they partake of a common nature.

There are 4 differences:

  1. The heat of the sun is much milder and gentler in degree than that of fire.
  2. It is much more moist in quality, especially as it is transmitted to us through the air.
  3. Which is the chief point, it is very unequal, advancing and increased at one time, retiring and diminished at another, which mainly contributes to the generation of bodies. For Aristotle rightly asserted, that the principal cause of generation and corruption on the surface of the earth was the oblique path of the sun in the zodiac, whence its heat becomes very unequal, partly from the alternation of night and day, partly from the succession of summer and winter. Yet must he immediately corrupt and pervert his discovery, by dictating to nature according to his habit, and dogmatically assigning the cause of generation to the approach of[190] the sun, and that of corruption to its retreat; while, in fact, each circumstance indifferently and not respectively contributes both to generation and corruption; for unequal heat tends to generate and corrupt, as equable heat does to preserve.
  4. The sun, gradually, and for a length of time, insinuates its effects, while those of fire (urged by the impatience of man) are brought to a termination in a shorter space of time. This is of great consequence.

But if any one were to pay attention to the tempering of fire, and reducing it to a more moderate and gentle degree (which may be done in various ways), and then were to sprinkle and mix a degree of humidity with it; and, above all, were to imitate the sun in its inequality; and, lastly, were patiently to suffer some delay (not such, however, as is proportioned to the effects of the sun, but more than men usually admit of in those of fire), he would soon banish the notion of any difference, and would attempt, or equal, or perhaps sometimes surpass the effect of the sun, by the heat of fire.

A like instance of alliance is that of reviving butterflies, benumbed and nearly dead from cold, by the gentle warmth of fire; so that fire is no less able to revive animals than to ripen vegetables.

The celebrated invention of Fracastorius, of applying a pan considerably heated to the head in desperate cases of apoplexy, which clearly expands the animal spirits, when compressed and almost extinguished by the humors and obstructions of the brain, and excites them to action, as the fire would operate on water or air, and in the result produces life.

Eggs are sometimes hatched by the heat of fire, an exact imitation of animal heat. The[191] heat of fire can thus be modified to resemble that of the heavenly bodies and of animals.

Again, let the required natures be motion and rest.

Natural bodies either revolve, move in a straight line, or stand still and rest.

For there is either motion without limit, or continuance within a certain limit, or a translation toward a certain limit.

The eternal motion of revolution appears peculiar to the heavenly bodies, rest to this our globe, and the other bodies (heavy and light, as they are termed, that is to say, placed out of their natural position) are borne in a straight line to masses or aggregates which resemble them, the light toward the heaven, the heavy toward the earth; and all this is very fine language.

But we have an instance of alliance in low comets, which revolve, though far below the heavens; and the fiction of Aristotle, of the comet being fixed to, or necessarily following some star, has been long since exploded; not only because it is improbable in itself, but from the evident fact of the discursive and irregular motion of comets through various parts of the heavens.[125]

Another instance of alliance is that of the motion of air, which appears to revolve from east to west within the tropics, where the circles of revolution are the greatest.

The flow and ebb of the sea would perhaps be another instance, if the water were once found to have a motion of[192] revolution, though slow and hardly perceptible, from east to west, subject, however, to a reaction twice a day. If this be so, it is clear that the motion of revolution is not confined to the celestial bodies, but is shared, also, by air and water.

The supposed peculiar disposition of light bodies to rise is rather shaken; and here we may find an instance of alliance in a water bubble. For if air be placed under water, it rises rapidly toward the surface by that striking motion (as Democritus terms it) with which the descending water strikes the air and raises it, not by any struggle or effort of the air itself; and when it has reached the surface of the water, it is prevented from ascending any further, by the slight resistance it meets with in the water, which does not allow an immediate separation of its parts, so that the tendency of the air to rise must be very slight.

Let the required nature be weight.

It is certainly a received classification, that dense and solid bodies are borne toward the centre of the earth, and rare and light bodies to the circumference of the heavens, as their appropriate places. As far as relates to places (though these things have much weight in the schools), the notion of there being any determinate place is absurd and puerile. Philosophers trifle, therefore, when they tell you, that if the earth were perforated, heavy bodies would stop on their arrival at the centre. This centre would indeed be an efficacious nothing, or mathematical point, could it affect bodies or be sought by them, for a body is not acted upon except by a body.[126] In fact, this tendency to ascend and[193] descend is either in the conformation of the moving body, or in its harmony and sympathy with another body.

But if any dense and solid body be found, which does not, however, tend toward the earth, the classification is at an end. Now, if we allow of Gilbert’s opinion, that the magnetic power of the earth, in attracting heavy bodies, is not extended beyond the limit of its peculiar virtue (which operates always at a fixed distance and no further),[127] and this be proved by some instance, such an instance will be one of alliance in our present subject. The nearest approach to it is that of waterspouts, frequently seen by persons navigating the Atlantic toward either of the Indies.

For the force and mass of the water suddenly effused by waterspouts, appears to be so considerable, that the water must have been collected previously, and have remained fixed where it was formed, until it was afterward forced down by some violent cause, rather than made to fall by the natural motion of gravity: so that it may be conjectured that a dense and compact mass, at a great distance from the earth, may be suspended as the earth itself is, and would not fall, unless forced down. We do not, however, affirm this as certain. In the meanwhile, both in this respect and many others, it will readily be seen how deficient we are in natural[194] history, since we are forced to have recourse to suppositions for examples, instead of ascertained instances.

Again, let the required nature be the discursive power of the mind. The classification of human reason and animal instinct appears to be perfectly correct. Yet there are some instances of the actions of brutes which seem to show that they, too, can syllogize.

Thus it is related, that a crow, which had nearly perished from thirst in a great drought, saw some water in the hollow trunk of a tree, but as it was too narrow for him to get into it, he continued to throw in pebbles, which made the water rise till he could drink; and it afterward became a proverb.

Let the required nature be vision. The classification appears real and certain, which considers light as that which is originally visible, and confers the power of seeing; and color, as being secondarily visible, and not capable of being seen without light, so as to appear a mere image or modification of light.

Yet there are instances of alliance in each respect; as in snow when in great quantities, and in the flame of sulphur; the one being a color originally and in itself light, the other a light verging toward color.[128]

14. The instances of the cross, or decisive and judicial instances, sometimes instances of the oracle and of command

36 A cross is where 2 roads meet, to point out the different directions.

When in investigating any nature the understanding is, as it were, balanced, and uncertain to which of two or more natures the cause of the required[195] nature should be assigned, on account of the frequent and usual concurrence of several natures, the instances of the cross show that the union of one nature with the required nature is firm and indissoluble, while that of the other is unsteady and separable; by which means the question is decided, and the first is received as the cause, while the other is dismissed and rejected.

Such instances, therefore, afford great light, and are of great weight, so that the course of interpretation sometimes terminates, and is completed in them. Sometimes, however, they are found among the instances already observed, but they are generally new, being expressly and purposely sought for and applied, and brought to light only by attentive and active diligence.

For example: let the required nature be the flow and ebb of the sea, which is repeated twice a day, at intervals of six hours between each advance and retreat, with some little difference, agreeing with the motion of the moon. We have here the following crossways:

This motion must be occasioned either by the advancing and the retiring of the sea, like water shaken in a basin, which leaves one side while it washes the other; or by the rising of the sea from the bottom, and its again subsiding, like boiling water.

But a doubt arises, to which of these causes we should assign the flow and ebb. If the first assertion be admitted, it follows, that when there is a flood on one side, there must at the same time be an ebb on another, and the question therefore is reduced to this. Now Acosta, and some others, after a diligent inquiry, have observed that the flood tide takes place on the coast of Florida, and the opposite coasts of Spain and Africa, at the same time, as does also the ebb; and that there is not, on the contrary, a flood tide at Florida when there is an ebb on the coasts of[196] Spain and Africa.

Yet if one consider the subject attentively, this does not prove the necessity of a rising motion, nor refute the notion of a progressive motion. For the motion may be progressive, and yet inundate the opposite shores of a channel at the same time; as if the waters be forced and driven together from some other quarter, for instance, which takes place in rivers, for they flow and ebb toward each bank at the same time, yet their motion is clearly progressive, being that of the waters from the sea entering their mouths.

So it may happen, that the waters coming in a vast body from the eastern Indian Ocean are driven together, and forced into the channel of the Atlantic, and therefore inundate both coasts at once. We must inquire, therefore, if there be any other channel by which the waters can at the same time sink and ebb; and the Southern Ocean at once suggests itself, which is not less than the Atlantic, but rather broader and more extensive than is requisite for this effect.

If it be positively discovered, that when the flood sets in toward the opposite coasts of Florida and Spain in the Atlantic, there is at the same time a flood tide on the coasts of Peru and the back part of China, in the Southern Ocean, then assuredly, from this decisive instance, we must reject the assertion, that the flood and ebb of the sea, about which we inquire, takes place by progressive motion; for no other sea or place is left where there can be an ebb. But this may most easily be learned, by inquiring of the inhabitants of Panama and Lima (where the two oceans are separated by a narrow isthmus), whether the flood and ebb takes place on the opposite sides of the isthmus at the same time, or the reverse. This decision or rejection appears certain,[197] if it be granted that the earth is fixed; but if the earth revolves, it may perhaps happen, that from the unequal revolution (as regards velocity) of the earth and the waters of the sea, there may be a violent forcing of the waters into a mass, forming the flood, and a subsequent relaxation of them (when they can no longer bear the accumulation), forming the ebb. A separate inquiry must be made into this. Even with this hypothesis, however, it remains equally true, that there must be an ebb somewhere, at the same time that there is a flood in another quarter.

Again, let the required nature be the latter of the two motions we have supposed; namely, that of a rising and subsiding motion, if it should happen that upon diligent examination the progressive motion be rejected. We have, then, three ways before us, with regard to this nature. The motion, by which the waters raise themselves, and again fall back, in the floods and ebbs, without the addition of any other water rolled toward them, must take place in one of the three following ways: Either the supply of water emanates from the interior of the earth, and returns back again; or there is really no greater quantity of water, but the same water (without any augmentation of its quantity) is extended or rarefied, so as to occupy a greater space and dimension, and again contracts itself; or there is neither an additional supply nor any extension, but the same waters (with regard to quantity, density, or rarity) raise themselves and fall from sympathy, by some magnetic power attracting and calling them up, as it were, from above. Let us then (passing over the first two motions) reduce the investigation to the last, and inquire if there be any such elevation of the water by sympathy or a magnetic force; and it is evident, in the first place, that the whole mass of water being[198] placed in the trench or cavity of the sea, cannot be raised at once, because there would not be enough to cover the bottom, so that if there be any tendency of this kind in the water to raise itself, yet it would be interrupted and checked by the cohesion of things, or (as the common expression is) that there may be no vacuum. The water, therefore, must rise on one side, and for that reason be diminished and ebb on another. But it will again necessarily follow that the magnetic power not being able to operate on the whole, operates most intensely on the centre, so as to raise the waters there, which, when thus raised successively, desert and abandon the sides.[129]

We at length arrive, then, at an instance of the cross, which is this: if it be found that during the ebb the surface of the waters at sea is more curved and round, from the waters rising in the middle, and sinking at the sides or coast, and if, during a flood, it be more even and level, from the waters returning to their former position, then assuredly, by this decisive instance, the raising of them by a magnetic force can be admitted; if otherwise, it must be entirely rejected. It is not difficult to make the experiment (by sounding in straits), whether the sea be deeper toward the middle in ebbs, than in floods. But it must be observed, if this be the case, that (contrary to common opinion) the waters rise in ebbs, and only return to their former position in floods, so as to bathe and inundate the coast.

Again, let the required nature be the spontaneous motion of revolution, and particularly, whether the diurnal motion, by which the sun and stars appear to us to rise and set, be[199] a real motion of revolution in the heavenly bodies, or only apparent in them, and real in the earth. There may be an instance of the cross of the following nature. If there be discovered any motion in the ocean from east to west, though very languid and weak, and if the same motion be discovered rather more swift in the air (particularly within the tropics, where it is more perceptible from the circles being greater). If it be discovered also in the low comets, and be already quick and powerful in them; if it be found also in the planets, but so tempered and regulated as to be slower in those nearest the earth, and quicker in those at the greatest distance, being quickest of all in the heavens, then the diurnal motion should certainly be considered as real in the heavens, and that of the earth must be rejected; for it will be evident that the motion from east to west is part of the system of the world and universal; since it is most rapid in the height of the heavens, and gradually grows weaker, till it stops and is extinguished in rest at the earth.

Again, let the required nature be that other motion of revolution, so celebrated among astronomers, which is contrary to the diurnal, namely, from west to east—and which the ancient astronomers assign to the planets, and even to the starry sphere, but Copernicus and his followers to the earth also—and let it be examined whether any such motion be found in nature, or it be rather a fiction and hypothesis for abridging and facilitating calculation, and for promoting that fine notion of effecting the heavenly motions by perfect circles; for there is nothing which proves such a motion in heavenly objects to be true and real, either in a planet’s not returning in its diurnal motion to the same point of the starry sphere, or in the pole of the zodiac being different[200] from that of the world, which two circumstances have occasioned this notion. For the first phenomenon is well accounted for by the spheres overtaking or falling behind each other, and the second by spiral lines; so that the inaccuracy of the return and declination to the tropics may be rather modifications of the one diurnal motion than contrary motions, or about different poles. And it is most certain, if we consider ourselves for a moment as part of the vulgar (setting aside the fictions of astronomers and the school, who are wont undeservedly to attack the senses in many respects, and to affect obscurity), that the apparent motion is such as we have said, a model of which we have sometimes caused to be represented by wires in a sort of a machine.

We may take the following instances of the cross upon this subject. If it be found in any history worthy of credit, that there has existed any comet, high or low, which has not revolved in manifest harmony (however irregularly) with the diurnal motion, then we may decide so far as to allow such a motion to be possible in nature. But if nothing of the sort be found, it must be suspected, and recourse must be had to other instances of the cross.

Again, let the required nature be weight or gravity. Heavy and ponderous bodies must, either of their own nature, tend toward the centre of the earth by their peculiar formation, or must be attracted and hurried by the corporeal mass of the earth itself, as being an assemblage of similar bodies, and be drawn to it by sympathy. But if the latter be the cause, it follows that the nearer bodies approach to the earth, the more powerfully and rapidly they must be borne toward it, and the further they are distant, the more faintly and slowly (as is the case in magnetic attractions),[201] and that this must happen within a given distance; so that if they be separated at such a distance from the earth that the power of the earth cannot act upon them, they will remain suspended like the earth, and not fall at all.[130]

The following instance of the cross may be adopted. Take a clock moved by leaden weights,[131] and another by[202] a spring, and let them be set well together, so that one be neither quicker nor slower than the other; then let the clock moved by weights be placed on the top of a very high church, and the other be kept below, and let it be well observed, if the former move slower than it did, from the diminished power of the weights. Let the same experiment be made at the bottom of mines worked to a considerable depth, in order to see whether the clock move more quickly from the increased power of the weights. But if this power be found to diminish at a height, and to increase in subterraneous places, the attraction of the corporeal mass of the earth may be taken as the cause of weight.

Again, let the required nature be the polarity of the steel needle when touched with the magnet. We have these two ways with regard to this nature—Either the touch of the magnet must communicate polarity to the steel toward the north and south, or else it may only excite and prepare it, while the actual motion is occasioned by the presence of the earth, which Gilbert considers to be the case, and endeavors to prove with so much labor. The particulars he has inquired into with such ingenious zeal amount to this—1. An iron bolt placed for a long time toward the north and south acquires polarity from this habit, without the touch of the magnet, as if the earth itself operating but weakly from its distance (for the surface or outer crust of the earth does not, in his opinion, possess the magnetic power), yet, by long continued motion, could supply the place of the magnet, excite the iron, and convert and change it when excited. 2. Iron, at a red or white heat, when[203] quenched in a direction parallel to the north and south, also acquires polarity without the touch of the magnet, as if the parts of iron being put in motion by ignition, and afterward recovering themselves, were, at the moment of being quenched, more susceptible and sensitive of the power emanating from the earth, than at other times, and therefore as it were excited. But these points, though well observed, do not completely prove his assertion.

An instance of the cross on this point might be as follows: Let a small magnetic globe be taken, and its poles marked, and placed toward the east and west, not toward the north and south, and let it continue thus. Then let an untouched needle be placed over it, and suffered to remain so for six or seven days. Now, the needle (for this is not disputed), while it remains over the magnet, will leave the poles of the world and turn to those of the magnet, and therefore, as long as it remains in the above position, will turn to the east and west. But if the needle, when removed from the magnet and placed upon a pivot, be found immediately to turn to the north and south, or even by degrees to return thither, then the presence of the earth must be considered as the cause, but if it remains turned as at first, toward the east and west, or lose its polarity, then that cause must be suspected, and further inquiry made.

Let the required nature be the corporeal substance of the moon, whether it be rare, fiery, and aërial (as most of the ancient philosophers have thought), or solid and dense (as Gilbert and many of the moderns, with some of the ancients, hold).[132] The reasons for this latter opinion[204] are grounded chiefly upon this, that the moon reflects the sun’s rays, and that light does not appear capable of being reflected except by solids.

The instances of the cross will therefore (if any) be such as to exhibit reflection by a rare body, such as flame, if it be but sufficiently dense. Now, certainly, one of the reasons of twilight is the reflection[133] of the rays of the sun by the upper part of the atmosphere. We see the sun’s rays also reflected on fine evenings by streaks of moist clouds, with a splendor not less, but perhaps more bright and glorious than that reflected from the body of the moon, and yet it is not clear that those clouds have formed into a dense body of water.

We see, also, that the dark air behind the windows at night reflects the light of a candle in the same manner as a dense body would do.[134] The experiment should also be made of causing the sun’s rays to fall through a hole upon some dark and bluish flame. The unconfined rays of the sun, when falling on faint flames, do certainly appear to deaden them, and render them more like white smoke than flames. These are the only instances which occur at present of the nature of those of the cross, and better perhaps can be found. But it must always be observed that reflection is not to be expected from flame, unless it be of some depth, for otherwise it becomes[205] nearly transparent. This at least may be considered certain, that light is always either received and transmitted or reflected by an even surface.

Let the required nature be the motion of projectiles (such as darts, arrows, and balls) through the air. The school, in its usual manner, treats this very carelessly, considering it enough to distinguish it by the name of violent motion, from that which they term natural, and as far as regards the first percussion or impulse, satisfies itself by its axiom, that two bodies cannot exist in one place, or there would be a penetration of dimensions.

With regard to this nature we have these two crossways—The motion must arise either from the air carrying the projected body, and collecting behind it, like a stream behind boats, or the wind behind straws; or from the parts of the body itself not supporting the impression, but pushing themselves forward in succession to ease it. Fracastorius, and nearly all those who have entered into any refined inquiry upon the subject, adopt the first. Nor can it be doubted that the air has some effect, yet the other motion is without doubt real, as is clear from a vast number of experiments. Among others we may take this instance of the cross, namely, that a thin plate or wire of iron rather stiff, or even a reed or pen split in two, when drawn up and bent between the finger and thumb, will leap forward; for it is clear that this cannot be attributed to the air’s being collected behind the body, because the source of motion is in the centre of the plate or pen, and not in its extremities.

Again, let the required nature be the rapid and powerful motion of the explosion of gunpowder, by which such vast masses are upheaved, and such weights discharged as we observe in large mines and mortars, there are two crossways[206] before us with regard to this nature. This motion is excited either by the mere effort of the body expanding itself when inflamed, or by the assisting effort of the crude spirit, which escapes rapidly from fire, and bursts violently from the surrounding flame as from a prison.

The school, however, and common opinion only consider the first effort; for men think that they are great philosophers when they assert that flame, from the form of the element, is endowed with a kind of necessity of occupying a greater space than the same body had occupied when in the form of powder, and that thence proceeds the motion in question. In the meantime they do not observe, that although this may be true, on the supposition of flame being generated, yet the generation may be impeded by a weight of sufficient force to compress and suffocate it, so that no such necessity exists as they assert.

They are right, indeed, in imagining that the expansion and the consequent emission or removal of the opposing body, is necessary if flame be once generated, but such a necessity is avoided if the solid opposing mass suppress the flame before it be generated; and we in fact see that flame, especially at the moment of its generation, is mild and gentle, and requires a hollow space where it can play and try its force.

The great violence of the effect, therefore, cannot be attributed to this cause; but the truth is, that the generation of these exploding flames and fiery blasts arises from the conflict of two bodies of a decidedly opposite nature—the one very inflammable, as is the sulphur, the other having an antipathy to flame, namely, the crude spirit of the nitre; so that an extraordinary conflict takes place while the sulphur is becoming inflamed as far as it can (for the third body, the willow charcoal, merely incorporates and conveniently unites the two others), and[207] the spirit of nitre is escaping, as far also as it can, and at the same time expanding itself (for air, and all crude substances, and water are expanded by heat), fanning thus, in every direction, the flame of the sulphur by its escape and violence, just as if by invisible bellows.

Two kinds of instances of the cross might here be used:

  1. Very inflammable substances, such as sulphur and camphor, naphtha and the like, and their compounds, which take fire more readily and easily than gunpowder if left to themselves (and this shows that the effort to catch fire does not of itself produce such a prodigious effect);
  2. Other substances which avoid and repel flame, such as all salts; for we see that when they are cast into the fire, the aqueous spirit escapes with a crackling noise before flame is produced, which also happens in a less degree in stiff leaves, from the escape of the aqueous part before the oily part has caught fire.

This is more particularly observed in quicksilver, which is not improperly called mineral water, and which, without any inflammation, nearly equals the force of gunpowder by simple explosion and expansion, and is said, when mixed with gunpowder, to increase its force.

Again, let the required nature be the transitory nature of flame and its momentaneous extinction; for to us the nature of flame does not appear to be fixed or settled, but to be generated from moment to moment, and to be every instant extinguished; it being clear that those flames which continue and last, do not owe their continuance to the same mass of flame, but to a continued succession of new flame regularly generated, and that the same identical flame does not continue. This is easily shown by removing the food or source of the flame, when it at once goes out. We[208] have the two following crossways with regard to this nature:

This momentary nature either arises from the cessation of the cause which first produced it, as in light, sounds, and violent motions, as they are termed, or flame may be capable, by its own nature, of duration, but is subjected to some violence from the contrary natures which surround it, and is destroyed.

We may therefore adopt the following instance of the cross. We see to what a height the flames rise in great conflagrations; for as the base of the flame becomes more extensive, its vertex is more lofty. It appears, then, that the commencement of the extinction takes place at the sides, where the flame is compressed by the air, and is ill at ease; but the centre of the flame, which is untouched by the air and surrounded by flame, continues the same, and is not extinguished until compressed by degrees by the air attacking it from the sides. All flame, therefore, is pyramidal, having its base near the source, and its vertex pointed from its being resisted by the air, and not supplied from the source. On the contrary, the smoke, which is narrow at the base, expands in its ascent, and resembles an inverted pyramid, because the air admits the smoke, but compresses the flame; for let no one dream that the lighted flame is air, since they are clearly heterogeneous.

The instance of the cross will be more accurate, if the experiment can be made by flames of different colors. Take, therefore, a small metal sconce, and place a lighted taper in it, then put it in a basin, and pour a small quantity of spirits of wine round the sconce, so as not to reach its edge, and light the spirit. Now the flame of the spirit will be blue, and that of the taper yellow; observe, therefore,[209] whether the latter (which can easily be distinguished from the former by its color, for flames do not mix immediately, as liquids do) continue pyramidal, or tend more to a globular figure, since there is nothing to destroy or compress it. If the latter result be observed, it must be considered as settled, that flame continues positively the same, while inclosed within another flame, and not exposed to the resisting force of the air.

Let this suffice for the instances of the cross. We have dwelt the longer upon them in order gradually to teach and accustom mankind to judge of nature by these instances, and enlightening experiments, and not by probable reasons.[135]

15. divorce

37 They indicate the separation of natures of the most common occurrence. They differ, however, from those subjoined to the accompanying instances; for the instances of divorce point out the separation of a particular nature from some concrete substance with which it is usually found in conjunction, while the hostile instances point out the total separation of one nature from another.

They differ, also, from the instances of the cross, because they decide nothing, but only inform us that the one nature is capable of being separated from the other. They are of use in exposing false forms, and dissipating hasty theories derived from obvious facts; so that they add ballast and weight, as it were, to the understanding.

For instance, let the acquired natures be those four which Telesius terms associates, and of the same family, namely, heat, light, rarity, and mobility, or promptitude to motion; yet many instances of divorce can be discovered between them. Air is rare and easily moved, but neither hot nor light; the moon is light but not hot; boiling water is warm but not light; the motion of the needle in the compass is swift and active, and yet its substance is cold, dense, and opaque; and there are many similar examples.

Again, let the required natures be corporeal nature and natural action. The latter appears incapable of subsisting without some body, yet may we, perhaps, even here find an instance of divorce, as in the magnetic motion, which draws the iron to the magnet, and heavy bodies to the globe of the earth; to which we may add other actions which operate at a distance. For such action takes place in time, by distinct moments, not in an instant; and in space, by regular degrees[211] and distances.

There is, therefore, some one moment of time and some interval of space, in which the power or action is suspended between the two bodies creating the motion. Our consideration, then, is reduced to this, whether the bodies which are the extremes of motion prepare or alter the intermediate bodies, so that the power advances from one extreme to the other by succession and actual contact, and in the meantime exists in some intermediate body; or whether there exists in reality nothing but the bodies, the power, and the space? In the case of the rays of light, sounds, and heat, and some other objects which operate at a distance, it is indeed probable that the intermediate bodies are prepared and altered, the more so because a qualified medium is required for their operation.

But the magnetic or attractive power admits of an indifferent medium, and it is not impeded in any. But if that power or action is independent of the intermediate body, it follows that it is a natural power or action existing in a certain time and space without any body, since it exists neither in the extreme nor in the intermediate bodies. Hence the magnetic action may be taken as an instance of divorce of corporeal nature and natural action; to which we may add, as a corollary and an advantage not to be neglected, that it may be taken as a proof of essence and substance being separate and incorporeal, even by those who philosophize according to the senses.

For if natural power and action emanating from a body can exist at any time and place entirely without any body, it is nearly a proof that it can also emanate originally from an incorporeal substance; for a corporeal nature appears to be no less necessary for supporting and conveying, than for exciting or generating natural action.